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Abstract

Discrete systems are automata that receive streams of inputs. They update their
internal state and then produce outputs. These constitute the bricks used in engineer-
ing and science in general for building complex machines. Discrete systems can be
thoughts as simple as needed, and thenwired together to produce arbitrarily complex
systems. This representation is also thought to be universal, in the sense that a full
range of objects may be described as constructionsmade frommoremodest elements,
from biological systems to computers or any industrial machine. This paper aims at
proving that the most complex discrete systems can reduce to a set of simple mem-
oryless automata, that is, automata that do not store any history of their inputs and
outputs. Such simplicity makes sense from a biological point of view as well, where
complex objects like the brain can be reduced to an interaction of mere cells. From
connections between atomic elements emerges the complexity of systems.

Keywords: category theory, discrete systems,memoryless system,monoidal category.

Preprint version: complete version can be found online on the French open-archive
HAL. Submitted to Hindawi’s International Journal of Mathematics and Mathematical
Science.

1 Introduction

This paper uses a representation of dynamical systems made with generalised automata,
whose state space is unrestricted (not necessarily finite nor countable). These automata
act like stream processors, in the following sense: they take inputs as a stream of data in
discrete time, and produces outputs, one per input. We refer to them as discrete systems.
In discrete systems, the state space may be seen as a memory of the inputs, a remainder
of its history. Each input of the stream changes the current state of the system and has an
influence on its future outputs.

2 Discrete systems and their equivalences

This article follows directly from [Spi16]. We recall that TFSSets is the category of Sets-
typed finite sets (i.e. pairs (P, τ) where P is finite and τ ∶ P → Sets is a function) and W

∗Spivak was supported by AFOSR grants FA9550-14-1-0031 and FA9550-17-1-0058, as well as NASA grant
NNH13ZEA001N-SSAT while working on this project.

1

https://hal.archives-ouvertes.fr/hal-01909539
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/ijmms/


is the category of Sets-boxes (or simply "boxes", i.e. pairsX = (X in,Xout)whereX in and
Xout are Sets-typed finite sets). Both categories are symmetric monoidal with respect to
operations that we will not introduce.

A Sets-typed finite set (P, τ) can be seen as a list of sets ⟨τ(p1), . . . , τ(pn)⟩. An arrow
between two list γ ∶ (P, τ) → (P ′, τ ′) is a function γ ∶ P → P ′ such that τ = τ ′ ○ γ, and
it corresponds to a reordering / duplication of the elements of the starting list. Then,
Sets-boxes are pairs of Sets-typed finite sets (X in,Xout) (the functions xin ∶ X in → Sets

and xout ∶ Xout → Sets are implicit): (X in, xin) is the list of accepted types of the input
ports, and (Xout, xout) is the list of types of the outputs ports.

If (P, τ) is a Sets-typed finite set, we define its dependent product as the product of
sets ∏

p∈P
τ(p), denoted by P

⋀

. If X = (X in,Xout) is a box, we define its dependent product

to be the pair X
⋀

= (X in
⋀

,Xout
⋀

). The idea is that, if a box X has a list of input types X in,

then the dependent product X in
⋀

is the mathematical object that contains all its inputs.
Similarly, Xout
⋀

is the set of all the potential outputs.
Thus, a box, or rather, the dependent product of a box, can be seen as the signature of

the function, or discrete system, that it will contain.

Definition 2.1 (Discrete systems [Spi16]). Let X = (X in,Xout) ∈ W be a box.
A discrete system for the box X , or simply discrete system, consists of a 4-tuple F =

(SF , f rdt, fupd, sF,0)where:

• SF ∈ Sets is called the state set
• f rdt ∶ SF →Xout

⋀

is called the readout function
• fupd ∶X in
⋀

× SF → SF is called the update function
• s0 ∈ SF is called the initial state

A boxX can be seen as an empty frame where discrete systems fit. For a given boxX ,
the set of all discrete systems that live inside is denoted DS (X).

Such discrete systems do not recognize languages like standard automata, but are
rather automata that take and return streams of data.

Theorem 2.2 ([Spi16]). DS∶W → Sets is a lax monoidal functor.

3 Main results

Definition 3.1 (Closure). LetA ∶ W → Setsbe a laxmonoidal functor. IfB ∶ ObW → ObSets
is a map (not necessarily a functor) such that ∀X ∈ ObW , B(X) ⊆ A(X), then the closure
of B in A, written Clos (B), is the smallest lax monoidal subfunctor of A containing B.

We now define a sub-map of DS that build memoryless (or reactive) systems. Our
main result involves showing that the closure of this sub-map is DS. In substance, we
show that any discrete system can be reduced to a memoryless system.

Definition 3.2 (Memoryless systems). In a box X = (X in,Xout), a memoryless (or reactive)
system is a discrete system (SF , f rdt, fupd, sF,0) ∈ DS (X) such that fupd ∶ X in

⋀

× SF → SF

verifies fupd = fu ○ π
X in
⋀ for some fu ∶X in

⋀

→ SF .

For a box X , the set of all memoryless systems that live inside is written DSML (X).
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Those systems are memoryless in that the state space is seen as a kind of memory, the
"life experience" of the system. A memoryless system is a discrete system that ignores its
memorywhen it transitions to a new state. In a sense, it only reacts to its input regardless of
its past experience. An example could be a trained neural network, which, after learning
its parameters, will only accomplish its function without updating them.

We can now state the main result of this paper: every discrete system is equivalent
to a memoryless system and a feedback loop. Here, we consider that two systems are
equivalent when, given the same input stream, they return the same output stream.
The feedback loop does the trick of reminding the previous output, and thus, somehow
emulate a state space.

Theorem 3.3. Clos (DSML) ≅ DS.

Proof. The proof is constructive. We build the equivalent memoryless discrete system
by expanding its state space, so that the current state consists in the previous output
(feedback loop).

This result and its proof have two interesting interpretations. First, memory emerges
from connections, and second, the only information one needs to build a state space, and
thus memory, is the last output; in particular, we do not need to have the whole list of
previous outputs.

4 Conclusion

The categorical framework was used in order to prove that a discrete system is equivalent
to a memoryless system with the right wiring, so that all the system needs to know is its
last output. With their nesting property, discrete systems are complex systems, and this
result may be seen as an emergence property.

The proof is indeed constructive, but the equivalent memoryless system we exhibit is
probably far from being "optimal" (for example, it is probably not the most parsimonious
in terms of state space). Finally, could we extend the result to other types of dynamical
systems, for example those introduced in [Spi16], such as measurable dynamical systems,
or continuous ones?
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